CAT Class: Diesel Generator 140kW/175kVA

Machine Model: QAS 175 FD T4F PRS

Configuration:

QAS 175 FD T4F PRS	Base Machine
- Fuel Autonomy	: 29.1 Hrs.
- AREP+ Excitation System	: Standard
- Class H Alternator	: Standard
- Digital AVR	: Standard
- DEIF Qc4004 Controller + TDU Display	: Standard
- Paralleling cubicle	: Standard
- 4-Position Voltage Selector Switch	: Standard
- Emergency stop	: Standard
- DOT approved dual axle trailer with electric brakes	: Standard for ES
- Convenience receptacles (120V\&240V)	: Standard for ES (2* 120V \& 3* 240V)
- Block heater	: Standard for ES
- Battery Charger	: Standard for ES
- External Fuel Tank Connections	: Standard for ES
- External DEF Transfer System	: Standard for ES
- 110\% Fluid Containment Frame	: Standard for ES
- Battery cut off switch	: Standard for ES
- Camlocks	: Standard for ES
- Internal Lights	: Standard for ES
- Rental Ready Package	: Standard for ES

- ES Brand Labels
- ES Specification Fire Extinguisher
- ES MC4+ Telematics
- ES Specification solar trickle charger

CAT Class: Diesel Generator 190kW/235kVA

Machine Model: QAS 235 FD T4F PRS

Configuration:

Standard Scope of Supply

United MHC's QAS 175-235 FD T4F generators are prime power, multi-voltage, sound attenuated, mobile generators. They are powered by an FPT T4 Final liquid-cooled, six-cylinder diesel engine.
The units consist of an alternator, diesel engine, cooling system, electrical distribution and control systems - all enclosed within a sound attenuated enclosure.

Special attention has been given to the overall product quality, user friendliness, ease of serviceability, and economical operation to ensure best in class total cost of ownership.

Available Models

```
QAS 175 FD
QAS 235 FD
```


Standard Features

Compact, sound attenuated, corrosion resistant, with single point lifting and 110% fluid containment

Dual axle trailer as standard

Heavy Duty alternator with AREP+ excitation and reinforced winding protection (system 2)

Single side service with long run filters and 500-hour service intervals

FPT N67TEVP01/02 engine models with DOC+SCRoF+CUC aftertreatment

Battery Charger (24V, 12A)
External Fuel Tank connections (3-way valve) located inside the enclosure

External DEF Transfer System located outside the enclosure

Identical enclosures and maintenance points between models

Emergency Stop
Remote signal Start / Stop

Multiple voltage - 175 kVA prime power - FD engine
Multiple voltage - 234 kVA prime power - FD engine

Benefits

Extremely durable and environmentally sensitive, designed to be used for everything from the oil field to special event power
Versatility, giving you the flexibility to match your machine to the correct application

Start-up power for the most demanding sites with 300\% overload starting capabilities and

Heavy duty oil, air and fuel filters extend the maintenance interval to 500 hours for reduced total cost of ownership

Proven engine platform with high reliability and durability

On board charger to ensure the battery is always ready for service
Flexibility to work with an external and larger fuel tank for extended autonomy

Electric DEF pump automatically controlled by Qc4004 controller for optimal external transfer system

Reduces stock of service kits and inventory of parts with rental ROI kept in mind
External, recessed emergency stop for increased safety
Allows connection as a critical back-up unit via a 2wire dry contact connection in the distribution panel

Technical Data ${ }^{1}$

Generator	Units	QAS 175 FD		QAS 235 FD	
Frequency	Hz	50	60	50	60
Rated Prime Power @ 400V/50Hz \& 480V/60Hz 3Ø	kW/kVA	126/158	140/175	164/205	187/234
Rated Standby Power @ 400V/50Hz \& 480V/60Hz 3Ø	kW/kVA	133/166	154/193	181/226	206/258
$3 \varnothing$ Power Factor		0.8	0.8	0.8	0.8
$3 \varnothing$ Voltage @ 480V 60Hz (Series Star w/Neutral)	V	-	480Y/277	-	480Y/277
Amp Capacity @ 480V 60Hz	A	-	210	-	281
$3 \varnothing$ Voltage @ 240-208V 60Hz (Parallel Star w/	V	-	240Y/120-208Y/120	-	240Y/120-208Y/120
Rated Prime Power @ 240V 3Ø	kW / kVA	-	140/175	-	187/234
Amp Capacity @ 240V 30	A	-	421	-	562
Rated Prime Power @ 208V 3Ø	kW / kVA	-	130/163	-	172/215
Amp Capacity @ 208V $3 \varnothing$	A	-	451	-	597
Rated Prime Power $1 \varnothing$	kW / kVA	-	76/76	-	100/100
10 Power Factor		-	1.0	-	1.0
10 Voltage @ 120-240V 60Hz (Zig-Zag)	V	-	240/120	-	240/120
Amp Capacity @ 240V	A	-	317	-	417
Amp Capacity @ 120V	A	-	2×317	-	2×417
30 Voltage @ 400V 50Hz (Series Star w/Neutral)	V	400Y/231	-	400Y/231	-
Amp Capacity @ 400V 50Hz	A	227	-	296	-
Performance Class (acc. ISO 8528-5:1993)		G2	G2	G2	G2
Single Step Load G2 Acceptance (0-PRP) @60Hz 480V	kW (\%)	74 kW (53\%)		75 kW (40\%)	
Single Step Load Capability @60Hz 480V	kW (\%)	140 kW (100\%)		187 kW (100\%)	
Sound Pressure Level @ 23'(7 m) @ 75\% Load ${ }^{2}$	$\mathrm{dB}(\mathrm{A})$	69		69	
Alternator (4 Pole, 12 Wire)	Leroy Somer	TAL 044J		TAL 044M	
Excitation system		AREP+		AREP+	
AVR - Automatic Voltage Regulator model		D350		D350	
AVR's AC voltage regulation accuracy	\%	$\pm 0.25 \%$		$\pm 0.25 \%$	
Insulation		Class H		Class H	
Main Breaker - Rated Current In	A	600		600	
Power Distribution - Terminal Board		5 Wire (L1, L2, L3, N, Ground)		5 Wire (L1, L2, L3, N, Ground)	
Terminal Board Connections		Bare Wire Terminals		Bare Wire Terminals	
Maximum Terminal Cable Size		350MCM		350MCM	
Convenience Receptacles ${ }^{3}$		N/A	(2) NEMA 5-20R (3) $125 / 250 \mathrm{~V}$ 50A CS6369	N/A	(2) NEMA 5-20R (3) $125 / 250 \mathrm{~V}$ 50A CS6369
Engine	Units	QAS 175 FD		QAS 235 FD	
Model	FPT	N67TEVP02		N67TEVP01	
US EPA Tier		Tier 4 Final		Tier 4 Final	
Displacement	L	6.7		6.7	
Cylinders	\#	6		6	
Rated Net Engine Power Output	HP (kW)	189 (141)		243 (181)	
Rated Speed	RPM	1800		1800	
Engine Control		ECU		ECU	
Aspiration		Turbocharged w/ Intercooler		Turbocharged w/ Intercooler	
Engine oil capacity ${ }^{4}$	US Gal (L)	9.51 (36)		9.51 (36)	
Engine coolant capacity	US Gal (L)	15.32 (58)		15.32 (58)	
Maximum Ambient Temperature (@ Sea Level) ${ }^{5}$	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	129.2 (54)		129.2 (54)	
Min. Starting Temp (w/o heater)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	5 (-15)		5 (-15)	
Minimum Starting Temperature (with heater) ${ }^{6}$	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-13 (-25)		-13 (-25)	
Electrical System (Negative Ground)	V	24		24	
Engine Alternator Output	A	90		90	
Battery Capacity (Cold Cranking Amps)	A	850		850	
Fuel System	Units	QAS 175 FD		QAS 235 FD	
Fuel Consumption @ 25\% load 50Hz / 60Hz	US Gal/hr (L/hr)	1.2 (4.5)	1.4 (5.2)	1.2 (4.5)	1.4 (5.2)
Fuel Consumption @ 50\% load $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	US Gal/hr (L/hr)	4.0 (15.0)	4.8 (18.0)	5.3 (19.9)	6.3 (24.0)
Fuel Consumption @ 75\% load $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	US Gal/hr (L/hr)	6.0 (22.7)	7.0 (26.4)	7.7 (29.1)	9.1 (34.4)
Fuel Consumption @ 100\% load $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	US Gal/hr (L/hr)	7.8 (29.7)	9.1 (34.4)	10.7 (40.3)	12.2 (46.3)
Fuel Type		Ultra-Low Sulfur Diesel ONLY ${ }^{7}$		Ultra-Low Sulfur Diesel ONLY ${ }^{7}$	
Fuel Tank Capacity	US Gal (L)	194 (735)		194 (735)	
Fuel Autonomy @ 75\% load and 90\% of fuel capacity	Hr	33.9	29.1	22.8	19.2
DEF Tank Capacity	US Gal (L)	11 (41.6)		11 (41.6)	

[^0]
Dimensions

Trailer Mounted

Weight - Wet (ready to operate)	Units	QAS 175 FD	QAS 235 FD
Trailer Mounted	$\mathrm{lbs}(\mathrm{Kg})$	$8658(3927)$	$9001(4083)$
Dimensions			
Trailer Mounted $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$	Inches	$203.2 \times 87.7 \times 100.8$	

Principle Data

Alternator

The Leroy Somer TAL alternators are designed for heavy duty continuous applications, with marine winding protection and Leroy Somer's AREP+ excitation system.

- AREP+ Excitation for superior motor starting capabilities
$\boxtimes \quad$ Marine grade (relative humidity $>95 \%$) protection
\boxtimes External multi-voltage selector switch (4 - position)
$\boxtimes 4$ pole brushless design with single bearing, Class H insulation and IP23 rating
\boxtimes Voltage regulation + - 0.25%
® Full Load acceptance of prime power rating

The AREP+ system uses 2 independent auxiliary windings located in the main stator to send supply voltage to the AVR:
$\boxtimes \quad$ The voltage delivered by the first auxiliary winding H 1 is proportional to the alternator output voltage (shunt characteristic).
$\boxtimes \quad$ The voltage delivered by the second auxiliary winding H 3 is proportional to the current drawn by the alternator and is a function of the applied load (compound characteristic - booster effect).
\| The resulting phase-to-phase voltage supplies power to the AVR.

This power supply to the AVR power circuit is independent of the voltage sensing measured on the alternator output terminals. Therefore, the excitation current delivered by the AVR to the alternator exciter is independent of any voltage distortions (harmonics) due to the load. The AREP+ system gives the alternator a high overload capacity (load impact or starting electric motors) and a short-circuit capability $(270 \%-5 \mathrm{~s})$ in order to provide discriminating protection: the alternator with AREP+ excitation is shorter than the one with PMG excitation. It is particularly suitable for demanding applications.

Compared performances of SHUNT, AREP and AREP+ systems

Performance @ Altitude and High Ambient Conditions

When using at altitude and high ambient conditions the engine and alternator will de-rate as per chart below (numbers shown below represent \% of power output).

	Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$										
Height m (Feet)	0 (32)	5 (41)	10 (50)	15 (59)	20 (68)	25 (77)	30 (86)	35 (95)	40 (104)	45 (113)	50 (122)
0	100	100	100	100	100	100	100	100	100	97	95
500 (1640)	100	100	100	100	100	100	100	100	100	97	95
1000 (3280)	100	100	100	100	100	100	100	100	100	97	95
1500 (4921)	97	97	97	97	97	97	97	97	97	94	92
2000 (6561)	94	94	94	94	94	94	94	94	94	91	89
2500 (8202)	91	91	91	91	91	91	91	91	91	88	86
3000 (9842)	88	88	88	88	88	88	88	88	88	85	83

Power Distribution

The main power is connected from the alternator through a 4-position voltage selector switch to the main power cubicle. The cubicle incorporates all power distribution, controls, sensing and protection devises.
\checkmark 4-position Voltage Selector Switch (VSS)
\checkmark Current transformer x 3 (1 each leg)
\checkmark Single main breaker w/shunt trip
\checkmark Individual breakers for each receptacle
\checkmark Convenience receptacles located on outside of unit for easy access
\checkmark Terminal board for hard wiring
\checkmark Cam-Lock external quick connect
\checkmark External emergency stop switch (recessed)
$\checkmark \quad$ Neutral bonded to Ground with a removable bonding link accessible in the control cubicle

Please refer to the chart below for power distribution and voltages. NOTE: All voltages below are subject to change, depending on set point of "Fine Voltage Adjustment" potentiometer and Voltage Selector Switch.

		120V Receptacle NEMA 5-20R	125/250V Receptacle CS6369	Terminal Board	
Fine Voltage Adjustment	Voltage Selector Switch Position		-1	$\text { (L1) L2 } L 3 N\left(\frac{A}{\bar{\sigma}}\right.$	
		120V	240/120V	$\stackrel{\text { 240 }}{\stackrel{20}{120} \rightarrow}$	
	240/139V 3ø 60Hz	139V	240/139V		
	240/139V 3ø 60Hz	120V	208/120V		
	$480 / 277 \mathrm{~V} 3 \varnothing 60 \mathrm{~Hz}$	139V	240/139V		
		N/A	N/A		

® All voltages are adjustable with the "Fine Voltage Adjustment" potentiometer located on the control panel. Therefore, voltage may be different then what is shown in the above table. All voltages should be verified before connection to the unit.

Convenience Receptacles

Receptacle	Type
X2, X3	120 V - NEMA 5-20R GFCI (outlets)
X4, X5, X6	125/250V - CS6369 (outlets)
X7	120V - NEMA 5-15P (shore power inlet
	for coolant heater and battery charger)

Controller - Standard

The QAS 175 and QAS 235 FD T4F are also available with a Qc4004 controller and Qd0701 capacitive touch screen display. This is a fully diagnostic ECU controller with large 7" diagonal (800×480 pixel) touch screen display that is intuitive and easy to operate with all functions conveniently at your fingertips. The controller also manages the engine ECU operating system, and a number of safety warnings and shutdowns on various parameters.

Additionally, our Power Management System (PMS) enables the optimization of fuel consumption and expands the generator lifetime. PMS manages the quantity of generators running in parallel with load demand, starting and stopping units in line with increases or decreases in load. This ensures the demand on each generator remains at a level which optimizes fuel consumption. This also eliminates the need for generators to run with low load levels, which can cause engine damage and shorten the life expectancy of the equipment.

Qc4004 Controller Benefits:

Modular Plant Capacity

$\checkmark \quad$ The Qc4004 controller allows up to 32 generators to be coupled in parallel to fit the power requirement of any application.

Remote communication capability

\checkmark The Qc4004 supports serial communication protocols including Modbus (RS-485, USB, and TCP/IP) and Profibus allowing you to supervise and control your genset/plant remotely.

User friendly rental interface

$\checkmark \quad$ Rental companies will benefit from the standardized user interfaces. The controller has been designed with ease of operation in mind, and rental companies can easily set and lock parameters to ensure full protection of their equipment.

Available Modes:

\checkmark Island mode - Power plant with synchronizing generators or a stand-alone generator. Also applicable in critical power plants.
$\checkmark \quad$ Automatic Mains Failure - Critical power/emergency standby plants, black start generator.
$\checkmark \quad$ Fixed power - Power plant with fixed kW set point (including building load).
$\checkmark \quad$ Peak shaving - Power plant where generator supplies peak load demand paralleled to the mains.
$\checkmark \quad$ Load takeover - Plant mode where the load is moved from mains to generator, for example peak demand periods or periods with risk of power outages.
$\checkmark \quad$ Mains power export - Power plant with fixed kW set point (excluding building load).
$\checkmark \quad$ Remote maintenance - Used when the generator must supply the load while a distribution transformer is disconnected for service.

* All modes are configurable, and it is possible to change the plant mode on the fly both in single and in power management applications.

Qd0701

FPT - Fiat Powertrain Technologies

FPT Tier 4 Final, turbo charged, intercooled, six-cylinder, liquid-cooled diesel engine provides ample power to operate the generator continuously at full-load.

Meets all US EPA, CARB and Environment Canada exhaust legislations with Tier 4 Final compliance. The engine utilizes an aftertreatment with a Diesel Oxidation Catalyst (DOC), Diesel Exhaust Fluid (DEF) injection, a Selective Catalytic Reduction on Filter (SCRoF) and a Clean-up Catalyst (CUC) to meet final Tier 4 emissions. All functionality of the engine is controlled automatically on the controller.

The engine has the capability to start the generator at $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ with standard glow-plug aid. A 120 V 1800 W coolant heater is standard and allows machine starting from $-13^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right)$.

The $194 \mathrm{Gal}(735 \mathrm{~L})$ fuel tank is sufficiently sized to operate the unit at full-load condition for long run times (see the Technical Data table for specifications).

The engine operates on a 24 V negative ground electrical system with a charging alternator and lockable battery cutoff switch.
The cooling system is suitably designed for continuous operation in ambient conditions up to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, with canopy door closed.

Fuel System

A large 194 US Gal (735L) fuel tank provides safe diesel storage while eliminating tank corrosion contaminants from being introduced to your fuel system. With integrated fuel water separator and filter, the system is designed to help maintain clean and trouble-free diesel supply to the engine for reliable trouble-free operation.

```
\checkmark Pad-lockable diesel fill cap
\checkmark Fuel / Water separator
Inline priming pump (w/ filter)
Fuel pre-filter
\checkmark Fuel supply pump (w/strainer)
Fuel level sensor
Low fuel shut down feature (programmable level)
\ External fuel connections w/3-way valve and quick disconnects
```


Scheduled maintenance

Standard equipped with filters sized and designed to allow 500-hour service intervals under normal operating conditions. Extended time between services reduces down time and total cost of ownership of the unit over its lifetime.

500 Hour Service Interval:

\checkmark Oil filter
\checkmark Fuel filter
\checkmark Fuel / water separator

1000 Hour Service Interval:
\checkmark Air filter
\checkmark Oil filter
\checkmark Fuel filter
\checkmark Fuel / water separator

NOTE: Site specific operating conditions such as; poor fuel quality and low load profile may require more frequent service intervals.

Enclosure \& Frame

The generator enclosure is designed for extreme applications to provide superior performance and reliability.
The enclosure is fabricated from zinc rich primer steel which is powder coated for corrosion resistance and tested for 1000 hours. The enclosure and frame are fully sealed from the radiator to the back of the unit, providing a true 110% containment of all fluids.
\checkmark Carbon steel, zinc rich primed, powder coated enclosure
\checkmark Heavy duty steel base frame
\checkmark 110\% fluid containment
\checkmark Superior level of rain ingress protection and design features
\checkmark Pad-lockable doors and fuel cap
\checkmark Engine fluid plumbed to exterior of frame for ease of service
\checkmark Central lifting point
\checkmark Sound dampening material and design to allow quiet operation at $69 \mathrm{~dB}(\mathrm{~A})$

Undercarriage

The QAS 175 and QAS 235 FD T4F are available with undercarriage trailer, providing utmost flexibility in installation, site handling or towing.

Trailer mounted:
\checkmark Dual axle trailer
\checkmark Electric brakes
\checkmark DOT/Federal MVSS 49CFR571 approved light package
\checkmark Adjustable height pintle hitch (3" lunette)
$\checkmark \quad 15$ " Rims w/ ST225/75R15 Tires for trailer use
\checkmark Heavy Duty torsion axle
$\checkmark 3 / 8^{\prime \prime}$ Safety chains with clevis slip hook and safety latch
\checkmark Screw jack leveling, with pad foot, 3,000 lbs static capacity
\checkmark Single point lifting structure
\checkmark D-Ring Tie down points $\times 4$

Manufacturing \& Environmental Standards

The QAS 175 and QAS 235 FD T4F are manufactured following stringent ISO 9001 Quality
Management requirements, and by a fully implemented Environmental Management \& Occupational Health and Safety Systems fulfilling ISO 14001 \& ISO 45001 requirements.
Attention has been given to ensure minimum negative impact to the environment.
The QAS 175 and QAS 235 FD T4F meet all current US EPA, CARB and Environment Canada exhaust and noise emission directives.

Supplied Documentation

The unit is delivered with documentation regarding:

- Hard copies of the United MHC Operators Safety and Instruction Manual, Atlas Copco Parts Book, FPT Engine Manual and Parts book, in English as well as electronic copies available on request.
- Warranty Registration card for engine and United MHC Generators (Units must be registered upon receipt).

Warranty Coverage

[^0]: 1 All ratings are at a reference condition of 0^{\prime} altitude and $20^{\circ} \mathrm{C}\left(72^{\circ} \mathrm{F}\right)$
 2 Measured in accordance with ISO 2151 under free field conditions @ 23ft distance
 3 Please see receptacle voltage configuration in Power Distribution section on page \#7
 4 Engine oil to meet CJ-4 (low ash oil)
 5 Please see "Derate Table" for altitude and temperature calculations on page \#6
 6 Coolant Heater (120V) is a standard feature.
 7 Engine and emissions require the use of Ultra Low Sulfur Diesel in accordance to ASTM-D975 Grade No.1-D S15 \& No.2-DS15

