CAT Class: Diesel Generator 560kW/700kVA

Machine Model: QAS 700 VD T4F PRS

Configuration:

QAS 700 VD T4F PRS	: Base Machine
Fuel Autonomy	: 22.6 Hrs.
AREP Excitation System	: Standard
Class H Alternator	: Standard
Digital AVR	: Standard
DEIF Qc4004 Controller + TDU Display	: Standard
Paralleling cubicle	: Standard
4-Position Voltage Selector Switch	: Standard
50/60Hz switchable	: Standard
Emergency stop	: Standard
DOT approved triple axle trailer with electric brakes	: Standard for ES
Convenience receptacles (120V\&240V)	: Standard for ES (2* 120V \& 3* 240V)
Block heater	: Standard for ES
Battery Charger	: Standard for ES
110\% Fluid Containment Frame	: Standard for ES
Battery cut off switch	: Standard for ES
External Fuel tank connection with Dual Fuel Filter	: Standard for ES
Camlocks	: Standard for ES
Internal lights	: Standard for ES
Rental Ready Package	: Standard for ES

- ES Brand Labels
- ES Specification Fire Extinguisher
- ES MC4+ Telematics
- ES Specification solar trickle charger

Standard Scope of Supply

United MHC's QAS 700 T4F generator is a prime power, multi-voltage, sound attenuated, mobile generator. It is powered by a Volvo
T4 Final liquid-cooled, six-cylinder diesel engine.
The units consist of an alternator, diesel engine, cooling system, electrical distribution and control systems - all enclosed within a sound attenuated enclosure fabricated from powder coated steel.

This United MHC's specs also includes:

- PMS Parallel controller with touchscreen display. Up to 32 generators can be linked in parallel
- Camlock panel for easy connection
- Battery Charger to keep the starting batteries ready to be used
- Digital AVR
- External fuel connections w/3-way valve, quick disconnects and dual fuel filters

Special attention has been given to the overall product quality, user friendliness, ease of serviceability, and economical operation to ensure best in class total cost of ownership.

Available Models

QAS 700 VD
Multiple voltage, $50 / 60 \mathrm{~Hz}$ switchable - 700kVA prime power - Volvo engine

Standard Features

- Compact, sound attenuated, corrosion resistant, with single point lifting and 110% fluid containment
- Tri axle trailer as standard
- Heavy Duty alternator with AREP excitation and marine grade protection
- Digital AVR
- Single side service with long run filters and 500 -hour service intervals
- Volvo TWD1683GE T4F engine (also StageV approved)
- SCR-only exhaust after treatment
- Voltage selector switch (4 positions)
- External Fuel Tank Connections (3-way valve) located inside the enclosure + RACOR dual fuel filters
- Camlock Panel
- Emergency Stop
- Battery Charger (24V, 12A)
- Internal lights
- Remote signal Start / Stop

Benefits

- Extremely durable and environmentally sensitive, designed to be used for everything from the oil field to special event power
- Versatility, giving you the flexibility to match your machine to the correct application
- Start-up power for the most demanding sites with 300% overload starting capabilities
- Increasing performance for larger load steps
- Heavy duty oil, air and fuel filters extend the maintenance interval to 500 hours for reduced total cost of ownership
- Proven engine platform with high reliability and durability
- Simplified, lower cost of ownership system
- Simple voltage change within seconds
- Flexibility to work with an external and larger fuel tank for extended autonomy. Dual fuel filters with water separator for optimal fuel quality at the engine intake
- Quick and easy connection of power cables
- External, recessed emergency stop for increased safety
- Ensures the batteries are always ready for starting
- Safety and convenience when servicing the unit
- Allows connection as a critical back-up unit via a 2wire dry contact connection in the distribution panel

Generator	Units	QAS 700 VD
Rated Prime Power $3 \varnothing$ @ 480V 60hz	kW/kVA	$560 / 700$
$3 \varnothing$ Power Factor		0.8
$3 \varnothing$ Voltage In 480 V Switch Position (Series Star w/ Neutral)	V	480Y/277
Amp Capacity @ 480V / 60Hz	A	842
$3 \varnothing$ Voltage In 240-208V Switch Position (Parallel Star w/ Neutral)	V	240YY/139-208YY/120
Rated Prime Power $3 \varnothing$ @ 240V 60hz	kW/kVA	506/632
Amp Capacity @ 240V / 60Hz	A	1520
Rated Prime Power $3 \varnothing$ @ 208V 60hz	kW/kVA	$438 / 548$
Amp Capacity @ 208V / 60Hz	A	1521
$3 \varnothing$ Voltage In 400 V 50 Hz Switch Position (Series Star w/ Neutral)	V	400Y/231
Rated Prime Power 30@ 400V 50hz	kW/kVA	$446 / 558$
Amp Capacity @ 400V / 50Hz	A	805
10 Power Factor		1
10 Voltage In 120-240V Switch Position (Zig-Zag)	V	120-240
Rated Prime Power 1 1 @ 120-240V 60hz	kW/kVA	260 / 260
Amp Capacity @ 240V / 60Hz	A	1083
Amp Capacity @ 120V / 60Hz	A	2×1083
Performance class (acc. ISO 8528-5:1993)		G2
Single Step Load Acceptance (0-PRP) @ $50 / 60 \mathrm{~Hz}$	kW (\%)	247.9 (55.6\%) @ $50 \mathrm{~Hz} \quad 374.7$ (66.9\%) @60Hz
Alternator (4 Pole, 12 Wire)	Leroy Somer	LSA 47.2 L9
Excitation		AREP
Automatic Voltage Regulator ($\pm 0.25 \%$)		DVC550
Insulation		Class H
Frequency	Hz	50/60
Main Breaker - Rated Current In	A	1600
Power Distribution - Terminal Board		5 Wire (L1, L2, L3, N, Ground)
Terminal Board Connections		Bare Wire Terminals
Maximum Terminal Cable Size		350MCM
Convenience Receptacles ${ }^{2}$		$\begin{gathered} 2 \times \text { NEMA 5-20R GFCI, } \\ 3 \times 125 / 250 \mathrm{~V} 50 \mathrm{~A} \mathrm{CS6369} \\ \hline \end{gathered}$
Engine	Units	QAS 700 VD
Model		Volvo TWD1683GE
US EPA Family		MVPXL16.1CDD
US EPA Tier		T4F
Displacement	1	16.12
Cylinders	\#	6
Continuous Engine Power Output (@1800 RPM)	HP (kW)	811 (596)
Gross Engine Power Output @ 1800 RPM)	HP (kW)	891 (655)
Rated Speed	RPM	1800
Engine Control		ECU
Aspiration		Two-Stage Turbo w/ Intercooler
Engine oil capacity ${ }^{3}$	Gal (I)	11.1 (42)
Engine coolant capacity	Gal (1)	29.3 (111)
Maximum Ambient Temperature (@ Sea Level) ${ }^{4}$	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
Minimum Starting Temperature (Without block heater on)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$
Minimum Starting Temperature (With block heater on)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$-13^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right)$
Electrical System (Negative Ground)	V	24
Engine Alternator Output	A	80
Battery Capacity (Cold Cranking Amps)	A	1400×2
Sound Pressure Level @ 23' 7 m) @ 75\% Load ${ }^{5}$	dB(A)	76
Fuel and DEF Systems	Units	QAS 700 VD
Fuel Consumption @ 25\% load	Gal/h (l/h)	12.19 (46.14)
Fuel Consumption @ 50\% load	Gal/h (l/h)	19.99 (75.67)
Fuel Consumption @ 75\% load	Gal/h (l/h)	28.12 (106.45)
Fuel Consumption @ 100\% load	Gal/h (l/h)	36.92 (139.76)
Fuel Type		Ultra-Low Sulfur Diesel ONLY ${ }^{6}$
Fuel Tank Capacity	Gal (I)	707 (2676)
Fuel Autonomy @ 75\% load and 90\% of fuel capacity	Hr	22.6
DEF Tank Capacity	Gal (I)	43.4 (164.2)
DEF Autonomy @ 75\% load and 95\% of DEF capacity	Hr	23.5

[^0]

Weight	Units	QAS 700 VD
Trailer Mounted - Wet (ready to operate)	$\mathrm{lbs}(\mathrm{kg})$	$26,620(12,075)$
Trailer Mounted - Dry	$\mathrm{lbs}(\mathrm{kg})$	$20,935(9,496)$
Dimensions		
Trailer Mounted (L×W $\times \mathrm{H})$	Inches	$260 \times 102 \times 120$

Main Data

Alternator

The Leroy Somer LSA alternators are designed for heavy duty continuous applications, with marine winding protection and Leroy Somer's AREP excitation system.

- AREP Excitation for superior motor starting capabilities
- Marine grade (relative humidity $>95 \%$) protection
- External multi-voltage selector switch (4 - position)
- 4 pole brushless design with single bearing, Class H insulation and IP23 rating
- Voltage regulation $+/-0.25 \%$
- Full Load acceptance of prime power rating

The AREP system uses 2 independent auxiliary windings located in the main stator to send supply voltage to the AVR:

- The voltage delivered by the first auxiliary winding H 1 is proportional to the alternator output voltage (shunt characteristic).
- The voltage delivered by the second auxiliary winding H3 is proportional to the current drawn by the alternator and is a function of the applied load (compound characteristic - booster effect).
- The resulting phase-to-phase voltage supplies power to the AVR.

This power supply to the AVR power circuit is independent of the voltage sensing measured on the alternator output terminals. Therefore, the excitation current delivered by the AVR to the alternator exciter is independent of any voltage distortions (harmonics) due to the load. The AREP system gives the alternator a high overload capacity (load impact or starting electric motors) and a short-circuit capability (300% -10 s) in order to provide discriminating protection: the alternator with AREP excitation is shorter than the one with PMG excitation. It is particularly suitable for demanding applications.

Performance @ Altitude and High Ambient Conditions

When using at altitude and high ambient conditions the engine and alternator will de-rate as per chart below.

QAS 700	Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$										
Height m (ft)	$\begin{gathered} 0 \\ (32) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ (41) \end{gathered}$	$\begin{gathered} 10 \\ (50) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 15 \\ (59) \\ \hline \end{array}$	$\begin{gathered} \hline 20 \\ (68) \end{gathered}$	$\begin{gathered} 25 \\ (77) \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ (86) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (95) \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ (104) \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ (113) \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ (122) \\ \hline \end{gathered}$
0	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	95\%	90\%
500 (1640)	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	95\%	90\%
1000 (3280)	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	90\%	85\%
1500 (4921)	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	90\%	85\%
2000 (6561)	90\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%	85\%
2500 (8202)	90\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%	90\%	85\%	85\%
3000 (9842)	85\%	85\%	85\%	85\%	85\%	85\%	85\%	85\%	85\%	85\%	80\%
3500 (11482)	85\%	85\%	85\%	85\%	85\%	85\%	85\%	85\%	85\%	80\%	80\%
4000 (13123)	80\%	80\%	80\%	80\%	80\%	80\%	80\%	80\%	80\%	80\%	75\%
4500 (14764)	75\%	75\%	75\%	75\%	75\%	75\%	75\%	75\%	75\%	70\%	70\%
5000 (16404)	70\%	70\%	70\%	70\%	70\%	70\%	70\%	70\%	70\%	65\%	65\%

Power Distribution

The main power is connected from the alternator through a 3-position voltage selector switch to the main power cubicle. The cubicle incorporates all power distribution, controls, sensing and protection devices.
\checkmark 4-position Voltage Selector Switch (VSS)
\checkmark Current transformer $\times 3$ (1 each leg)
\checkmark Single main breaker w/shunt trip
\checkmark Individual breakers for each receptacle
\checkmark Convenience receptacles located on outside of unit for easy access
\checkmark Terminal board for hard wiring
\checkmark Cam-Lock external quick connect
\checkmark External emergency stop switch (recessed)
\checkmark Neutral bonded to Ground with a removable bonding link accessible in the control cubicle

Please refer to the chart below for power distribution and voltages. NOTE: All voltages below are subject to change, depending on set point of controller parameters and Voltage Selector Switch.

』 All voltages are adjustable with the "Fine Voltage Adjustment" potentiometer located on the control panel. Therefore, voltage may be different then what is shown in the above table. All voltages should be verified before connection to the unit.

* Fine voltage adjustment via controller parameters

Convenience Receptacles

Receptacle	Type
X2, X3	120V - NEMA 5-20R GFCI (outlets)
X4, X5, X6	125/250V - CS6369 (outlets)
X7	120 V - NEMA 5-15P (shore power inlet for coolant heater and battery charger)

Controller

The United MHC QAS 700 comes equipped with a Qc4004 controller and Qd0701 capacitive touch screen display. This is a fully diagnostic ECU controller with large 7" diagonal (800×480 pixel) touch screen display that is intuitive and easy to operate with all functions conveniently at your fingertips. The controller also manages the engine ECU operating system, and several safety warnings and shut downs on various parameters.

Additionally, our Power Management System (PMS) enables the optimization of fuel consumption and expands the generator lifetime. PMS manages the quantity of generators running in parallel with load demand, starting and stopping units in line with increases or decreases in load. This ensures the demand on each generator remains at a level which optimizes fuel consumption. This also eliminates the need for generators to run with low load levels, which can cause engine damage and shorten the life expectancy of the equipment.

Qc4004 Controller Benefits:

Modular Plant Capacity

\checkmark The Qc4004 controller allows up to 32 generators to be coupled in parallel to fit the power requirement of any application.

Remote communication capability

\checkmark The Qc4004 supports serial communication protocols including Modbus (RS-485, USB, and TCP/IP) and Profibus allowing you to supervise and control your genset/plant remotely.

User friendly rental interface

\checkmark Rental companies will benefit from the standardized user interfaces. The controller has been designed with ease of operation in mind, and rental companies can easily set and lock parameters to ensure full protection of their equipment.

Available Modes:

\checkmark Island mode - Power plant with synchronizing generators or a stand-alone generator. Also applicable in critical power plants.
\checkmark Automatic Mains Failure - Critical power/emergency standby plants, black start generator.
$\checkmark \quad$ Fixed power - Power plant with fixed kW set point (including building load).
\checkmark Peak shaving - Power plant where generator supplies peak load demand paralleled to the mains.
$\checkmark \quad$ Load takeover - Plant mode where the load is moved from mains to generator, for example peak demand periods or periods with risk of power outages.
$\checkmark \quad$ Mains power export - Power plant with fixed kW set point (excluding building load).
\checkmark Remote maintenance - Used when the generator must supply the load while a distribution transformer is disconnected for service.

* All modes are configurable, and it is possible to change the plant mode on the fly both in single and in power management applications.

Qd0701

Engine

Volvo

Volvo Tier 4 Final, turbo charged, intercooled, six-cylinder, liquid-cooled diesel engine provides ample power to operate the generator continuously at full-load.

Meets all US EPA, CARB and Environment Canada exhaust legislations with Tier 4 Final compliance. The engine utilizes a Selective Catalytic Reduction (SCR) and Diesel Exhaust Fluid (DEF) to meet final Tier 4 emissions. All functionality of the engine is monitored automatically on the controller.
The engine has the capability to start the generator at $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ with standard glow-plug aid. Cold start capability with a 1500 W block heater on is available for machine starting for down to $-13^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right)$.
The $707 \mathrm{Gal}(2,646 \mathrm{I})$ fuel tank is sufficiently sized to operate the unit at full-load condition for long run times (see chart on page 2 for specifications).

The engine operates on a 24 V negative ground electrical system with a charging alternator and lockable battery cutoff switch.
The cooling system is suitably designed for continuous operation in ambient conditions up to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, with canopy door closed.

Fuel System

A large 707 US Gal $(2,676 \mathrm{I})$ fuel tank provides safe diesel storage while eliminating tank corrosion contaminants from being introduced to your fuel system. With integrated fuel water separator and filter, the system is designed to help maintain clean and trouble-free diesel supply to the engine for reliable trouble-free operation.
\checkmark Pad-lockable diesel fill cap
\checkmark Fuel / Water separator
$\checkmark \quad$ Inline priming pump (w/filter)
$\checkmark \quad$ Fuel pre-filter
\checkmark Fuel supply pump (w/strainer)
\checkmark Fuel level sensor
$\checkmark \quad$ Low fuel shut down feature (programmable level)
\checkmark External fuel connections w/3-way valve and quick disconnects
\checkmark RACOR dual fuel filters

Scheduled maintenance

Standard equipped with filters sized and designed to allow 500-hour service intervals under normal operating conditions. Extended time between services reduces down-time and total cost of ownership of the unit over its lifetime.

500 Hour Service Interval:

\checkmark Oil filter

\checkmark Fuel filter
$\checkmark \quad$ Fuel / water separator

1000 Hour Service Interval:
\checkmark Air filter
\checkmark Oil filter
$\checkmark \quad$ Fuel filter
$\checkmark \quad$ Fuel / water separator

Enclosure \& Frame

The generator enclosure is designed for extreme applications to provide superior performance and reliability.

The enclosure is made of carbon steel which is zinc rich primed, powder coated for corrosion resistance and salt spray tested for 6000 hours. The enclosure and frame are fully sealed from the radiator to the back of the unit, providing a true 110% containment of all fluids.
$\checkmark \quad 14 \mathrm{Ga}$ carbon steel, zinc rich primer, powder coated enclosure
\checkmark Heavy duty, 1/4" thick steel base frame
$\checkmark 110 \%$ fluid containment
\checkmark Superior level of rain ingress protection and design features
\checkmark Pad-lockable doors and fuel cap
\checkmark Engine fluid plumbed to exterior of frame for ease of service
\checkmark Central lifting point
\checkmark Sound dampening material and design to allow quiet operation

Undercarriage

The QAS 700's trailer provides utmost flexibility in installation, site handling or towing.
Trailer mounted:
\checkmark Triple axle trailer
\checkmark Electric brakes
\checkmark DOT/Federal approved light package and 7 Blade RV plug
\checkmark Adjustable height pintle hitch (3" lunette)
$\checkmark \quad$ 17.5" Rims with 215/75R LR H Tires for trailer use
$\checkmark \quad$ Heavy Duty torsion axles
$\checkmark \quad$ GR70 Safety chains with clevis slip hook and safety latch
\checkmark Screw jack leveling, with pad foot, 25,000 lbs capacity
\checkmark Single point lifting structure
\checkmark Tie down points $x 4$

Manufacturing \& Environmental Standards

The QAS 700 VD is manufactured following stringent ISO 9001 Quality Management requirements, and by a fully implemented Environmental Management \& Occupational Health and Safety Systems fulfilling ISO 14001 \& ISO 45001 requirements.

Attention has been given to ensure minimum negative impact to the environment.
The QAS $\mathbf{7 0 0}$ VD T4F meets all current US EPA, CARB and Environment Canada exhaust and noise emission directives.

Supplied Documentation

The unit is delivered with documentation regarding:

- Hard copies of the United MHC Operators Safety and Instruction Manual, Volvo Engine Manual and Parts book, in English as well as electronic copies available on request.
- Warranty Registration card for engine and United MHC Generators (Units must be registered upon receipt).

Warranty Coverage

As per United MHC's Program Agreement

[^0]: 1 All ratings are at a reference condition of 0^{\prime} altitude and $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
 2 Please see receptacle voltage configuration in Power Distribution section on page \#6
 3 Engine oil to meet CJ-4 (low ash oil)
 4 Please see "Derate Table" for altitude and temperature calculations on page \#5
 5 Measured in accordance with ISO 2151 under free field conditions @ 7m distance (23ft)
 6 Engine and emissions require the use of Ultra Low Sulfur Diesel in accordance to ASTM-D975 Grade No.1-D S15 \& No.2-D S15

